_____/ /N _____\ _____/ N

Topics in Cylindrical Algebraic Decomposition
A PN ﬁKi‘;ﬁ Corin Lee, cel340@bath.ac.uk
) Supervisors: Prof. G.K. Sankaran and Prof. J.H. Davenport

Department of Mathematical Sciences, University of Bath

Introduction Motivation

CAD is a symbolic method for solving problems in real algebraic
geometry, and CADs can be used to determine whether a polynomial
system has a solution. But why not just test points numerically?
Suppose we want to find if there is a value of x such that

glx)=3—2’50 and Alz)— (7o —12)(z" + 2 +1)>0.

Sampling 1000+ values numerically might not find such an z, and could
not prove such a value does not exist — but a CAD-based method can:

0.8

0.6

0.4

0.2

0.0

-0.24

—0.4

—0.61

—0.81

1 2 3 - O

CAD{yg, h})*: {x < —V3}U{z=—V3}U{- \/ 3< < 12/7}
U{r=12/TYU {12/7 <2 <3} U{z =3}U {z > /3.

A cylindrical algebraic decomposition (CAD) is a method in real semi-algebraic geometry that partitions real
space into a finite number of connected cells with useful structural properties.

Originally introduced by Collins for quantifier elimination [1], CAD remains practical in many settings despite
its worst-case doubly-exponential complexity [2], with even small efficiency improvements making a significant
difference in practice.

My work aims to make CAD more accessible and effective through:

= Tools for visualising decompositions and understanding CAD behaviour

= Implementations and tools in the mathematical software systems Maple and Macaulay?

= Benchmarking of CAD algorithms to identify cases where one is preferable

dentifying when CAD is (not) suitable, alternative methods, and input simplification

SN —

Key Features

Creating a CAD reduces the search from “everywhere” to checking
a finite number of sample points, and will show whether a suitable
point exists, making it very suitable for quantifier elimination, with
applications in fields such as robotics, economics, and biology.

[
CAD in Macaulay2

Given a set of polynomials F,, in n variables, a CAD decomposes n-dimensional real space into finitely many
disjoint regions called cells. These cells are:

= Algebraic: They can be defined by a finite set of polynomial equations and inequalities
» Cylindrically arranged: They stack up over cells in lower dimensions.

= Invariant: The polynomials have a fixed property in each cell, e.g. constant sign (positive/negative/zero),
truth value (true/false according to a logical formula).

Our package CylindricalAlgebraicDecomposition is the first
implementation of CAD in Macaulay?:

2 2

N 4

» Computes open CADs using Lazard projection

= Qutputs a tree of sample points for full-dimensional cells

= Offers a new heuristic for variable ordering

= Users can query for positive solutions, explore full/partial trees, and
step through the algorithm

= [mproves existing root isolation techniques

T N
TN N

37 0 37 20 _979 979 2003 1 _ 7967 () 7967 16159 33 () 33

Figure 1: CAD of 2>+ y* — 1 in two-dimensional space, consisting of 13 cells (coloured regions, edges and points).
Each has a sample point (black cross), and stacks over a one-dimensional CAD cell below (blue squares and lines).

CAD Construction
There are multiple algorithms for constructing a CAD, but the most common is F, CAD(F,)

X

10 2048 2048 1024 16 384 16384 8192

a projection and lifting algorithm:

‘pro] }Lift

F CAD(F) Figure 2: Open CAD of {z* +4? — 1,2° — 9*} and tree diagram of corresponding sample points.
Projection phase: Apply projection operator proj to JF,, to produce a new set n-l n-l Green sample point is one where both polynomials are positive.
I I " " " " "] i Read th -print by visiting h : iv. bs/2503.21731 ing the QR cod he b :
Of p0|yn0m|a|s Fn—l in one dlmenSIOn fewer_ Repeat thIS Untll one Obtalns fl- {prok] {Lft ead the pre-print by visiting https://arxiv.org/abs/2503.21731 or scanning the QR code at the bottom

Base Phase: Decompose one-dimensional real space into cells: the solutions Jpro e

of each polynomial in F; and the open intervals either side. This is CAD(/F7).

PoY 1 P AR CAD(F) Methods and Features
Lifting Phase: Substitute a sample point from each cell into > and decompose o N e
as before, giving CAD(F3). Repeat this process until one obtains CAD(F,). a split into cells. CAD(A) Other tools and features to exploit include:

» Block-cylindricity: Exploiting the freedom given when variable
order need only be partially fixed

= Symmetry: Preserving symmetries to allow for polynomial degree
reduction through a change of variables

CAD in Maple

» Effective quantification: Treating otherwise-free variables as
quantified to allow for more efficient variable orderings

Graphing Tool

Development of a tool for visualising 2D CADs in Maple (see Figures 1 and 2), enabling clearer communication
and helping users better explore and understand outputs.

» Clearly displays cells by dimension with use of colour

= Displays sample points and cells of 1D CAD below Future Work

= Supports output from both the QuantifierElimination and RegularChains packages
= Improve Maple graphing tool: 1D/2D /3D projection of higher-
dimension CADs, multiple colouring schemes, truth-invariance

Algorithm Benchmarking

= Benchmarked RegularChains and QuantifierElimination CAD algorithms on SMT-LIB style dataset « Extend Macaulay2 package to full CAD: This would allow

= Measured runtime, memory use, and cell count under different variable orderings, forms, and uses of equational solving non-linear arithmetic problems through quantifier elimination

constraints

= Further benchmarking and complexity analysis: Further
comparisons may highlight when one algorithm is more favourable

For further information, visit:

= Found notable performance and output differences, suggesting each has strengths in particular settings

References

[1] George E. Collins. “Quantifier elimination for real closed fields by cylindrical algebraic decomposition”. In: Automata Theory and Formal Languages. Springer, 1975,
pp. 134-183.

[2] James H. Davenport and Joos Heintz. “Real quantifier elimination is doubly exponential”. In: Journal of Symbolic Computation 5.1 (1988), pp. 29-35. DOI: 10.1016/
S0747-7171(88)80004-X.

https://github.com/cel34- bath/CADRep081tory

