

Topics in Cylindrical Algebraic Decomposition

Corin Lee, cel34@bath.ac.uk

Supervisors: Prof. G.K. Sankaran and Prof. J.H. Davenport Department of Mathematical Sciences, University of Bath

Introduction

A cylindrical algebraic decomposition (CAD) is a method in real semi-algebraic geometry that partitions real space into a finite number of connected cells with useful structural properties.

Originally introduced by Collins for quantifier elimination [1], CAD remains practical in many settings despite its worst-case doubly-exponential complexity [2], with even small efficiency improvements making a significant difference in practice.

My work aims to make CAD more accessible and effective through:

- Tools for visualising decompositions and understanding CAD behaviour
- Implementations and tools in the mathematical software systems *Maple* and *Macaulay2*
- Benchmarking of CAD algorithms to identify cases where one is preferable
- Identifying when CAD is (not) suitable, alternative methods, and input simplification

Key Features

Given a set of polynomials \mathcal{F}_n in n variables, a CAD decomposes n-dimensional real space into finitely many disjoint regions called *cells*. These cells are:

- Algebraic: They can be defined by a finite set of polynomial equations and inequalities
- **Cylindrically arranged:** They stack up over cells in lower dimensions.
- Invariant: The polynomials have a fixed property in each cell, e.g. constant sign (positive/negative/zero), truth value (true/false according to a logical formula).

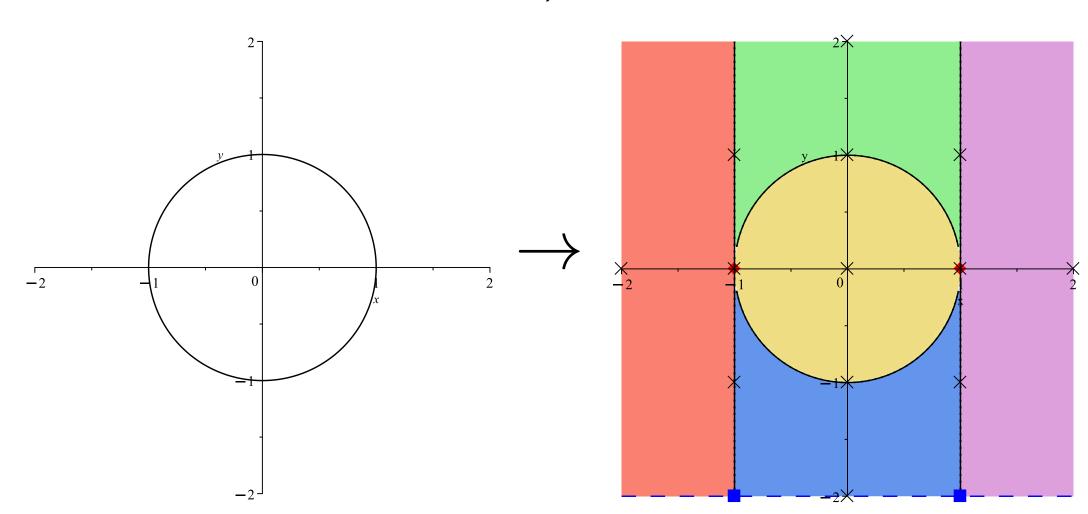


Figure 1: CAD of $x^2 + y^2 - 1$ in two-dimensional space, consisting of 13 cells (coloured regions, edges and points). Each has a sample point (black cross), and stacks over a one-dimensional CAD cell below (blue squares and lines).

CAD Construction

There are multiple algorithms for constructing a CAD, but the most common is a *projection and lifting* algorithm:

Projection phase: Apply *projection operator* proj to \mathcal{F}_n to produce a new set of polynomials \mathcal{F}_{n-1} in one dimension fewer. Repeat this until one obtains \mathcal{F}_1 .

Base Phase: Decompose one-dimensional real space into cells: the solutions of each polynomial in \mathcal{F}_1 and the open intervals either side. This is $CAD(\mathcal{F}_1)$.

Lifting Phase: Substitute a *sample point* from each cell into \mathcal{F}_2 and decompose as before, giving $CAD(\mathcal{F}_2)$. Repeat this process until one obtains $CAD(\mathcal{F}_n)$.

\mathcal{F}_n	$\mathrm{CAD}(\mathcal{F}_n)$
proj	Lift
\mathcal{F}_{n-1}	$\mathrm{CAD}(\mathcal{F}_{n-1})$
_proj	Lift
i	:
proj	Lift
\mathcal{F}_2	$\mathrm{CAD}(\mathcal{F}_2)$
\begin{pmatrix} proj	Lift
$\mathcal{F}_1 \xrightarrow{\text{find roots}}$	$ ext{CAD}(\mathcal{F}_1)$

CAD in Maple

Graphing Tool

Development of a tool for visualising 2D CADs in *Maple* (see Figures 1 and 2), enabling clearer communication and helping users better explore and understand outputs.

- Clearly displays cells by dimension with use of colour
- Displays sample points and cells of 1D CAD below
- Supports output from both the QuantifierElimination and RegularChains packages

Algorithm Benchmarking

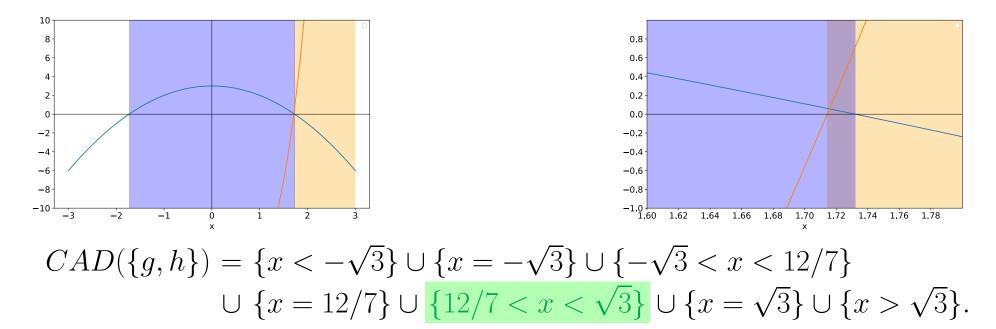
- Benchmarked RegularChains and QuantifierElimination CAD algorithms on SMT-LIB style dataset
- Measured runtime, memory use, and cell count under different variable orderings, forms, and uses of equational constraints
- Found notable performance and output differences, suggesting each has strengths in particular settings

Motivation

CAD is a symbolic method for solving problems in real algebraic geometry, and CADs can be used to determine whether a polynomial system has a solution. But why not just test points numerically? Suppose we want to find if there is a value of \boldsymbol{x} such that

$$g(x) = 3 - x^2 > 0$$
 and $h(x) = (7x - 12)(x^2 + x + 1) > 0$.

Sampling 1000+ values numerically might not find such an x, and could not prove such a value does not exist — but a CAD-based method can:



Creating a CAD reduces the search from "everywhere" to checking a finite number of sample points, and will show whether a suitable point exists, making it very suitable for quantifier elimination, with applications in fields such as robotics, economics, and biology.

CAD in Macaulay2

Our package CylindricalAlgebraicDecomposition is the first implementation of CAD in *Macaulay2*:

- Computes open CADs using Lazard projection
- Outputs a tree of sample points for full-dimensional cells
- Offers a new heuristic for variable ordering
- Users can query for positive solutions, explore full/partial trees, and step through the algorithm
- Improves existing root isolation techniques

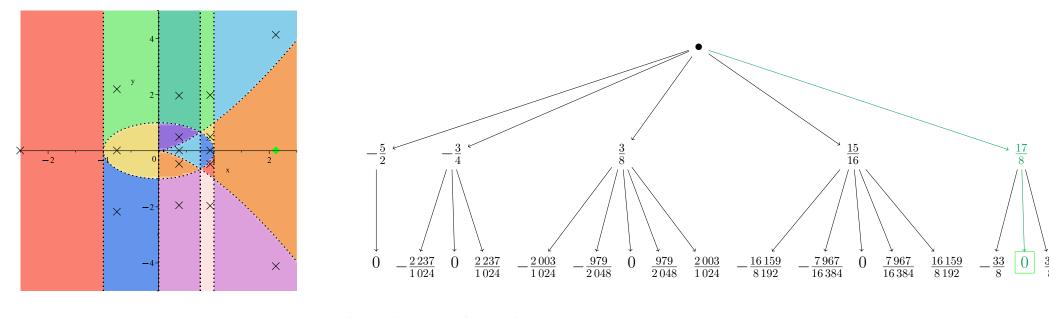


Figure 2: Open CAD of $\{x^2 + y^2 - 1, x^3 - y^2\}$ and tree diagram of corresponding sample points. Green sample point is one where both polynomials are positive.

Read the pre-print by visiting https://arxiv.org/abs/2503.21731 or scanning the QR code at the bottom

Methods and Features

Other tools and features to exploit include:

- Block-cylindricity: Exploiting the freedom given when variable order need only be partially fixed
- Symmetry: Preserving symmetries to allow for polynomial degree reduction through a change of variables
- **Effective quantification:** Treating otherwise-free variables as quantified to allow for more efficient variable orderings

Future Work

- Improve *Maple* graphing tool: 1D/2D/3D projection of higher-dimension CADs, multiple colouring schemes, truth-invariance
- **Extend** *Macaulay2* package to full CAD: This would allow solving non-linear arithmetic problems through quantifier elimination
- Further benchmarking and complexity analysis: Further comparisons may highlight when one algorithm is more favourable

References

[1] George E. Collins. "Quantifier elimination for real closed fields by cylindrical algebraic decomposition". In: Automata Theory and Formal Languages. Springer, 1975, pp. 134–183.

[2] James H. Davenport and Joos Heintz. "Real quantifier elimination is doubly exponential". In: *Journal of Symbolic Computation* 5.1 (1988), pp. 29–35. DOI: 10.1016/S0747-7171(88)80004-X.

For further information, visit:

